Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Haematologica ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38426285

RESUMO

Recent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for ~4.3% of AMLs in childhood and about 3% in adult AMLs under 60, are subtype-defining and associated with poor outcomes. Here, we provide a comprehensive investigation into the clinicopathological features of UBTF-TD myeloid neoplasms in childhood, including 89 unique pediatric AML and 6 myelodysplastic syndrome (MDS) cases harboring a tandem duplication in exon 13 of UBTF. We demonstrate that UBTF-TD myeloid tumors are associated with dysplastic features, low bone marrow blast infiltration, and low white blood cell count. Furthermore, using bulk and single-cell analyses, we confirm that UBTF-TD is an early and clonal event associated with a distinct transcriptional profile, whereas the acquisition of FLT3 or WT1 mutations is associated with more stem celllike programs. Lastly, we report rare duplications within exon 9 of UBTF that phenocopy exon 13 duplications, expanding the spectrum of UBTF alterations in pediatric myeloid tumors. Collectively, we comprehensively characterize pediatric AML and MDS with UBTF-TD and highlight key clinical and pathologic features that distinguish this new entity from other molecular subtypes of AML.

2.
Leukemia ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454121

RESUMO

MGA (Max-gene associated) is a dual-specificity transcription factor that negatively regulates MYC-target genes to inhibit proliferation and promote differentiation. Loss-of-function mutations in MGA have been commonly identified in several hematological neoplasms, including acute myeloid leukemia (AML) with RUNX1::RUNX1T1, however, very little is known about the impact of these MGA alterations on normal hematopoiesis or disease progression. We show that representative MGA mutations identified in patient samples abolish protein-protein interactions and transcriptional activity. Using a series of human and mouse model systems, including a newly developed conditional knock-out mouse strain, we demonstrate that loss of MGA results in upregulation of MYC and E2F targets, cell cycle genes, mTOR signaling, and oxidative phosphorylation in normal hematopoietic cells, leading to enhanced proliferation. The loss of MGA induces an open chromatin state at promoters of genes involved in cell cycle and proliferation. RUNX1::RUNX1T1 expression in Mga-deficient murine hematopoietic cells leads to a more aggressive AML with a significantly shortened latency. These data show that MGA regulates multiple pro-proliferative pathways in hematopoietic cells and cooperates with the RUNX1::RUNX1T1 fusion oncoprotein to enhance leukemogenesis.

3.
Nat Genet ; 56(2): 281-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212634

RESUMO

Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 887 pAML into 23 mutually distinct molecular categories, including new major entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3 or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a new prognostic framework for pAML based on these updated molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.


Assuntos
Leucemia Mieloide Aguda , Humanos , Criança , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , Genômica , Fatores de Transcrição/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética
4.
Blood ; 143(7): 619-630, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890156

RESUMO

ABSTRACT: UBTF tandem duplications (UBTF-TDs) have recently emerged as a recurrent alteration in pediatric and adult acute myeloid leukemia (AML). UBTF-TD leukemias are characterized by a poor response to conventional chemotherapy and a transcriptional signature that mirrors NUP98-rearranged and NPM1-mutant AMLs, including HOX-gene dysregulation. However, the mechanism by which UBTF-TD drives leukemogenesis remains unknown. In this study, we investigated the genomic occupancy of UBTF-TD in transformed cord blood CD34+ cells and patient-derived xenograft models. We found that UBTF-TD protein maintained genomic occupancy at ribosomal DNA loci while also occupying genomic targets commonly dysregulated in UBTF-TD myeloid malignancies, such as the HOXA/HOXB gene clusters and MEIS1. These data suggest that UBTF-TD is a gain-of-function alteration that results in mislocalization to genomic loci dysregulated in UBTF-TD leukemias. UBTF-TD also co-occupies key genomic loci with KMT2A and menin, which are known to be key partners involved in HOX-dysregulated leukemias. Using a protein degradation system, we showed that stemness, proliferation, and transcriptional signatures are dependent on sustained UBTF-TD localization to chromatin. Finally, we demonstrate that primary cells from UBTF-TD leukemias are sensitive to the menin inhibitor SNDX-5613, resulting in markedly reduced in vitro and in vivo tumor growth, myeloid differentiation, and abrogation of the UBTF-TD leukemic expression signature. These findings provide a viable therapeutic strategy for patients with this high-risk AML subtype.


Assuntos
Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Humanos , Criança , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição , Proteína Meis1/genética
5.
medRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014207

RESUMO

Recent genomic studies in adult and pediatric acute myeloid leukemia (AML) demonstrated recurrent in-frame tandem duplications (TD) in exon 13 of upstream binding transcription factor (UBTF). These alterations, which account for ~4.3% of AMLs in childhood and up to 3% in adult AMLs under 60, are subtype-defining and associated with poor outcomes. Here, we provide a comprehensive investigation into the clinicopathological features of UBTF-TD myeloid neoplasms in childhood, including 89 unique pediatric AML and 6 myelodysplastic syndrome (MDS) cases harboring a tandem duplication in exon 13 of UBTF. We demonstrate that UBTF-TD myeloid tumors are associated with dysplastic features, low bone marrow blast infiltration, and low white blood cell count. Furthermore, using bulk and single-cell analyses, we confirm that UBTF-TD is an early and clonal event associated with a distinct transcriptional profile, whereas the acquisition of FLT3 or WT1 mutations is associated with more stem cell-like programs. Lastly, we report rare duplications within exon 9 of UBTF that phenocopy exon 13 duplications, expanding the spectrum of UBTF alterations in pediatric myeloid tumors. Collectively, we comprehensively characterize pediatric AML and MDS with UBTF-TD and highlight key clinical and pathologic features that distinguish this new entity from other molecular subtypes of AML.

6.
Nat Mater ; 22(11): 1338-1344, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604910

RESUMO

Solid-state quantum emitters have emerged as a leading quantum memory for quantum networking applications. However, standard optical characterization techniques are neither efficient nor repeatable at scale. Here we introduce and demonstrate spectroscopic techniques that enable large-scale, automated characterization of colour centres. We first demonstrate the ability to track colour centres by registering them to a fabricated machine-readable global coordinate system, enabling a systematic comparison of the same colour centre sites over many experiments. We then implement resonant photoluminescence excitation in a widefield cryogenic microscope to parallelize resonant spectroscopy, achieving two orders of magnitude speed-up over confocal microscopy. Finally, we demonstrate automated chip-scale characterization of colour centres and devices at room temperature, imaging thousands of microscope fields of view. These tools will enable the accelerated identification of useful quantum emitters at chip scale, enabling advances in scaling up colour centre platforms for quantum information applications, materials science and device design and characterization.

7.
Res Sq ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37398194

RESUMO

Recent studies on pediatric acute myeloid leukemia (pAML) have revealed pediatric-specific driver alterations, many of which are underrepresented in the current classification schemas. To comprehensively define the genomic landscape of pAML, we systematically categorized 895 pAML into 23 molecular categories that are mutually distinct from one another, including new entities such as UBTF or BCL11B, covering 91.4% of the cohort. These molecular categories were associated with unique expression profiles and mutational patterns. For instance, molecular categories characterized by specific HOXA or HOXB expression signatures showed distinct mutation patterns of RAS pathway genes, FLT3, or WT1, suggesting shared biological mechanisms. We show that molecular categories were strongly associated with clinical outcomes using two independent cohorts, leading to the establishment of a prognostic framework for pAML based on molecular categories and minimal residual disease. Together, this comprehensive diagnostic and prognostic framework forms the basis for future classification of pAML and treatment strategies.

8.
Nat Commun ; 14(1): 1739, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019972

RESUMO

Oncogenic fusions formed through chromosomal rearrangements are hallmarks of childhood cancer that define cancer subtype, predict outcome, persist through treatment, and can be ideal therapeutic targets. However, mechanistic understanding of the etiology of oncogenic fusions remains elusive. Here we report a comprehensive detection of 272 oncogenic fusion gene pairs by using tumor transcriptome sequencing data from 5190 childhood cancer patients. We identify diverse factors, including translation frame, protein domain, splicing, and gene length, that shape the formation of oncogenic fusions. Our mathematical modeling reveals a strong link between differential selection pressure and clinical outcome in CBFB-MYH11. We discover 4 oncogenic fusions, including RUNX1-RUNX1T1, TCF3-PBX1, CBFA2T3-GLIS2, and KMT2A-AFDN, with promoter-hijacking-like features that may offer alternative strategies for therapeutic targeting. We uncover extensive alternative splicing in oncogenic fusions including KMT2A-MLLT3, KMT2A-MLLT10, C11orf95-RELA, NUP98-NSD1, KMT2A-AFDN and ETV6-RUNX1. We discover neo splice sites in 18 oncogenic fusion gene pairs and demonstrate that such splice sites confer therapeutic vulnerability for etiology-based genome editing. Our study reveals general principles on the etiology of oncogenic fusions in childhood cancer and suggests profound clinical implications including etiology-based risk stratification and genome-editing-based therapeutics.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma , Causalidade , Proteínas de Fusão Oncogênica/genética
9.
J Clin Invest ; 132(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074606

RESUMO

SAMD9 and SAMD9L germline mutations have recently emerged as a new class of predispositions to pediatric myeloid neoplasms. Patients commonly have impaired hematopoiesis, hypocellular marrows, and a greater risk of developing clonal chromosome 7 deletions leading to MDS and AML. We recently demonstrated that expressing SAMD9 or SAMD9L mutations in hematopoietic cells suppresses their proliferation and induces cell death. Here, we generated a mouse model that conditionally expresses mutant Samd9l to assess the in vivo impact on hematopoiesis. Using a range of in vivo and ex vivo assays, we showed that cells with heterozygous Samd9l mutations have impaired stemness relative to wild-type counterparts, which was exacerbated by inflammatory stimuli, and ultimately led to bone marrow hypocellularity. Genomic and phenotypic analyses recapitulated many of the hematopoietic cellular phenotypes observed in patients with SAMD9 or SAMD9L mutations, including lymphopenia, and pinpointed TGF-ß as a potential targetable pathway. Further, we observed nonrandom genetic deletion of the mutant Samd9l locus on mouse chromosome 6, mimicking chromosome 7 deletions observed in patients. Collectively, our study has enhanced our understanding of mutant Samd9l hematopoietic phenotypes, emphasized the synergistic role of inflammation in exaggerating the associated hematopoietic defects, and provided insights into potential therapeutic options for patients.


Assuntos
Neoplasias , Proteínas Supressoras de Tumor , Camundongos , Animais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Hematopoese/genética , Mutação em Linhagem Germinativa , Fatores de Transcrição/genética , Deleção Cromossômica , Neoplasias/genética , Síndrome , Transtornos da Insuficiência da Medula Óssea
10.
Blood Cancer Discov ; 3(3): 194-207, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35176137

RESUMO

The genetics of relapsed pediatric acute myeloid leukemia (AML) has yet to be comprehensively defined. Here, we present the spectrum of genomic alterations in 136 relapsed pediatric AMLs. We identified recurrent exon 13 tandem duplications (TD) in upstream binding transcription factor (UBTF) in 9% of relapsed AML cases. UBTF-TD AMLs commonly have normal karyotype or trisomy 8 with cooccurring WT1 mutations or FLT3-ITD but not other known oncogenic fusions. These UBTF-TD events are stable during disease progression and are present in the founding clone. In addition, we observed that UBTF-TD AMLs account for approximately 4% of all de novo pediatric AMLs, are less common in adults, and are associated with poor outcomes and MRD positivity. Expression of UBTF-TD in primary hematopoietic cells is sufficient to enhance serial clonogenic activity and to drive a similar transcriptional program to UBTF-TD AMLs. Collectively, these clinical, genomic, and functional data establish UBTF-TD as a new recurrent mutation in AML. SIGNIFICANCE: We defined the spectrum of mutations in relapsed pediatric AML and identified UBTF-TDs as a new recurrent genetic alteration. These duplications are more common in children and define a group of AMLs with intermediate-risk cytogenetic abnormalities, FLT3-ITD and WT1 alterations, and are associated with poor outcomes. See related commentary by Hasserjian and Nardi, p. 173. This article is highlighted in the In This Issue feature, p. 171.


Assuntos
Leucemia Mieloide Aguda , Adulto , Criança , Aberrações Cromossômicas , Éxons , Genômica , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Recidiva
11.
Blood Cancer Discov ; 2(6): 586-599, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34778799

RESUMO

Genomic characterization of pediatric patients with acute myeloid leukemia (AML) has led to the discovery of somatic mutations with prognostic implications. Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute leukemias for biological subtype discovery. This analysis revealed 63 patients with varying immunophenotypes that span a T-lineage and myeloid continuum designated as acute myeloid/T-lymphoblastic leukemia (AMTL). Within AMTL, two patient subgroups distinguished by FLT3-ITD and PRC2 mutations have different outcomes, demonstrating the impact of mutational composition on survival. Across the cohort, variability in outcomes of patients within isomutational subsets is influenced by transcriptional identity and the presence of a stem cell-like gene-expression signature. Integration of gene expression and somatic mutations leads to improved risk stratification. SIGNIFICANCE: Immunophenotype and somatic mutations play a significant role in treatment approach and risk stratification of acute leukemia. We conducted an integrated genomic analysis of pediatric myeloid malignancies and found that a combination of genetic and transcriptional readouts was superior to immunophenotype and genomic mutations in identifying biological subtypes and predicting outcomes. This article is highlighted in the In This Issue feature, p. 549.


Assuntos
Leucemia Mieloide Aguda , Criança , Perfilação da Expressão Gênica , Genômica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Mutação/genética , Prognóstico
12.
Nat Commun ; 12(1): 985, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579957

RESUMO

Pediatric therapy-related myeloid neoplasms (tMN) occur in children after exposure to cytotoxic therapy and have a dismal prognosis. The somatic and germline genomic alterations that drive these myeloid neoplasms in children and how they arise have yet to be comprehensively described. We use whole exome, whole genome, and/or RNA sequencing to characterize the genomic profile of 84 pediatric tMN cases (tMDS: n = 28, tAML: n = 56). Our data show that Ras/MAPK pathway mutations, alterations in RUNX1 or TP53, and KMT2A rearrangements are frequent somatic drivers, and we identify cases with aberrant MECOM expression secondary to enhancer hijacking. Unlike adults with tMN, we find no evidence of pre-existing minor tMN clones (including those with TP53 mutations), but rather the majority of cases are unrelated clones arising as a consequence of cytotoxic therapy. These studies also uncover rare cases of lineage switch disease rather than true secondary neoplasms.


Assuntos
Leucemia Mieloide Aguda/genética , Segunda Neoplasia Primária/genética , Criança , Regulação Neoplásica da Expressão Gênica , Genômica , Histona-Lisina N-Metiltransferase , Humanos , Leucemia Mieloide Aguda/terapia , Mutação , Síndromes Mielodisplásicas , Proteína de Leucina Linfoide-Mieloide , Segunda Neoplasia Primária/terapia , Prognóstico , Sequenciamento do Exoma
13.
Nature ; 583(7815): 226-231, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641812

RESUMO

A central challenge in developing quantum computers and long-range quantum networks is the distribution of entanglement across many individually controllable qubits1. Colour centres in diamond have emerged as leading solid-state 'artificial atom' qubits2,3 because they enable on-demand remote entanglement4, coherent control of over ten ancillae qubits with minute-long coherence times5 and memory-enhanced quantum communication6. A critical next step is to integrate large numbers of artificial atoms with photonic architectures to enable large-scale quantum information processing systems. So far, these efforts have been stymied by qubit inhomogeneities, low device yield and complex device requirements. Here we introduce a process for the high-yield heterogeneous integration of 'quantum microchiplets'-diamond waveguide arrays containing highly coherent colour centres-on a photonic integrated circuit (PIC). We use this process to realize a 128-channel, defect-free array of germanium-vacancy and silicon-vacancy colour centres in an aluminium nitride PIC. Photoluminescence spectroscopy reveals long-term, stable and narrow average optical linewidths of 54 megahertz (146 megahertz) for germanium-vacancy (silicon-vacancy) emitters, close to the lifetime-limited linewidth of 32 megahertz (93 megahertz). We show that inhomogeneities of individual colour centre optical transitions can be compensated in situ by integrated tuning over 50 gigahertz without linewidth degradation. The ability to assemble large numbers of nearly indistinguishable and tunable artificial atoms into phase-stable PICs marks a key step towards multiplexed quantum repeaters7,8 and general-purpose quantum processors9-12.

14.
PLoS One ; 14(12): e0226406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31834925

RESUMO

Myosin regulatory light chain (LC20) phosphorylation plays an important role in vascular smooth muscle contraction and cell migration. Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates LC20 (its only known substrate) exclusively at S19. Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in the regulation of LC20 phosphorylation via direct phosphorylation of LC20 at T18 and S19 and indirectly via phosphorylation of MYPT1 (the myosin targeting subunit of myosin light chain phosphatase, MLCP) and Par-4 (prostate-apoptosis response-4). Phosphorylation of MYPT1 at T696 and T853 inhibits MLCP activity whereas phosphorylation of Par-4 at T163 disrupts its interaction with MYPT1, exposing the sites of phosphorylation in MYPT1 and leading to MLCP inhibition. To evaluate the roles of MLCK, ROCK and ZIPK in these phosphorylation events, we investigated the time courses of phosphorylation of LC20, MYPT1 and Par-4 in serum-stimulated human vascular smooth muscle cells (from coronary and umbilical arteries), and examined the effects of siRNA-mediated MLCK, ROCK and ZIPK knockdown and pharmacological inhibition on these phosphorylation events. Serum stimulation induced rapid phosphorylation of LC20 at T18 and S19, MYPT1 at T696 and T853, and Par-4 at T163, peaking within 30-120 s. MLCK knockdown or inhibition, or Ca2+ chelation with EGTA, had no effect on serum-induced LC20 phosphorylation. ROCK knockdown decreased the levels of phosphorylation of LC20 at T18 and S19, of MYPT1 at T696 and T853, and of Par-4 at T163, whereas ZIPK knockdown decreased LC20 diphosphorylation, but increased phosphorylation of MYPT1 at T696 and T853 and of Par-4 at T163. ROCK inhibition with GSK429286A reduced serum-induced phosphorylation of LC20 at T18 and S19, MYPT1 at T853 and Par-4 at T163, while ZIPK inhibition by HS38 reduced only LC20 diphosphorylation. We also demonstrated that serum stimulation induced phosphorylation (activation) of ZIPK, which was inhibited by ROCK and ZIPK down-regulation and inhibition. Finally, basal phosphorylation of LC20 in the absence of serum stimulation was unaffected by MLCK, ROCK or ZIPK knockdown or inhibition. We conclude that: (i) serum stimulation of cultured human arterial smooth muscle cells results in rapid phosphorylation of LC20, MYPT1, Par-4 and ZIPK, in contrast to the slower phosphorylation of kinases and other proteins involved in other signaling pathways (Akt, ERK1/2, p38 MAPK and HSP27), (ii) ROCK and ZIPK, but not MLCK, are involved in serum-induced phosphorylation of LC20, (iii) ROCK, but not ZIPK, directly phosphorylates MYPT1 at T853 and Par-4 at T163 in response to serum stimulation, (iv) ZIPK phosphorylation is enhanced by serum stimulation and involves phosphorylation by ROCK and autophosphorylation, and (v) basal phosphorylation of LC20 under serum-free conditions is not attributable to MLCK, ROCK or ZIPK.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Músculo Liso Vascular/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Miosinas/metabolismo , Quinases Associadas a rho/metabolismo , Proteínas Reguladoras de Apoptose/genética , Artérias/citologia , Artérias/metabolismo , Células Cultivadas , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/genética , Humanos , Músculo Liso Vascular/citologia , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/genética , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosforilação , RNA Interferente Pequeno/genética , Soro/metabolismo , Transdução de Sinais , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética
15.
IUBMB Life ; 71(10): 1475-1481, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31046198

RESUMO

Vascular smooth muscle cells of the renal afferent arteriole are unusual in that they must be able to contract very rapidly in response to a sudden increase in systemic blood pressure in order to protect the downstream glomerular capillaries from catastrophic damage. We showed that this could be accounted for, in part, by exclusive expression, at the protein level, of the "fast" (B) isoforms of smooth muscle myosin II heavy chains in the afferent arteriole, in contrast to other vascular smooth muscle cells such as the rat aorta and efferent arteriole which express exclusively the "slow" (A) isoforms (Shiraishi et al. (2003) FASEB. J. 17, 2284-2286). As contraction of the more rapidly contracting striated (skeletal and cardiac) muscles is regulated by the thin filament-associated troponin (Tn) system, we hypothesized that Tn or a Tn-like system may exist in afferent arteriolar cells and contribute to the unusually rapid contraction of this tissue in response to increased intraluminal pressure. We examined the expression of TnC (Ca2+ -binding subunit), TnI (inhibitory subunit), and TnT (tropomyosin-binding subunit) in vascular smooth muscle cells of the rat renal afferent arteriole at the mRNA level. Fast-twitch skeletal muscle and slow-twitch skeletal muscle/cardiac TnC isoforms and slow-twitch skeletal muscle and cardiac TnI isoforms were detected by reverse transcription-polymerase chain reaction (RT-PCR) and confirmed by cDNA sequencing. Furthermore, cardiac and slow-twitch skeletal muscle TnI isoforms, but not fast-twitch skeletal muscle TnI, were detected in isolated afferent arterioles at the protein level by proximity ligation assay. Finally, striated muscle myosin II heavy chain expression was identified in isolated rat afferent arterioles by RT-PCR. We conclude that, in addition to Ca2+ -mediated phosphorylation of myosin II regulatory light chains, contraction of the afferent arteriole may be regulated by a mechanism normally associated with the much more rapidly contracting cardiac and skeletal muscles, which involves Ca2+ binding to TnC, leading to alleviation of inhibition of the actomyosin MgATPase by TnI and tropomyosin and rapid contraction of the vessel.


Assuntos
Arteríolas/metabolismo , Rim/metabolismo , Contração Muscular/genética , Troponina/genética , Citoesqueleto de Actina/genética , Adenosina Trifosfatases/genética , Animais , Cálcio/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Miosina Tipo II/genética , Fosforilação/genética , Isoformas de Proteínas/genética , Ratos , Tropomiosina/genética
16.
Proteins ; 86(11): 1211-1217, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30381843

RESUMO

Zipper-interacting protein kinase (ZIPK) is a Ser/Thr kinase that mediates a variety of cellular functions. Analogue-sensitive kinase technology was applied to the study of ZIPK signaling in coronary artery smooth muscle cells. ZIPK was engineered in the ATP-binding pocket by substitution of a bulky gatekeeper amino acid (Leu93) with glycine. Cell-permeable derivatives of pyrazolo[3,4-d]pyrimidine provided effective inhibition of L93G-ZIPK (1NM-PP1, IC50 , 1.0 µM; 3MB-PP1, IC50 , 2.0 µM; and 1NA-PP1, IC50 , 8.6 µM) but only 3MB-PP1 had inhibitory potential (IC50 > 10 µM) toward wild-type ZIPK. Each of the compounds also attenuated Rho-associated coiled-coil containing protein kinase (ROCK) activity under experimental conditions found to be optimal for inhibition of L93G-ZIPK. In silico molecular simulations showed effective docking of 1NM-PP1 into ZIPK following mutational enlargement of the ATP-binding pocket. Molecular simulation of 1NM-PP1 docking in the ATP-binding pocket of ROCK was also completed. The 1NM-PP1 inhibitor was selected as the optimal compound for selective chemical genetics in smooth muscle cells since it displayed the highest potency for L93G-ZIPK relative to WT-ZIPK and the weakest off-target effects against other relevant kinases. Finally, the 1NM-PP1 and L93G-ZIPK pairing was effectively applied in vascular smooth muscle cells to manipulate the phosphorylation level of LC20, a previously defined target of ZIPK.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Transdução de Sinais , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Proteínas Quinases Associadas com Morte Celular/química , Proteínas Quinases Associadas com Morte Celular/genética , Humanos , Simulação de Acoplamento Molecular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Engenharia de Proteínas , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transfecção
18.
Artigo em Inglês | MEDLINE | ID: mdl-29891567

RESUMO

Donor-derived hematologic malignancies are rare complications of hematopoietic cell transplantation (HCT). Although these are commonly either a myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), in general, they are a heterogeneous group of diseases, and a unified mechanism for their development has remained elusive. Here we report next-generation sequencing, including whole-exome sequencing (WES), whole-genome sequencing (WGS), and targeted sequencing, of a case of donor-derived MDS (dMDS) following HCT for high-risk B-lymphoblastic leukemia (B-ALL) in an adolescent. Through interrogation of single-nucleotide polymorphisms (SNPs) in the WGS data, we unequivocally prove that the MDS is donor-derived. Additionally, we sequenced 15 samples from 12 time points, including the initial B-ALL diagnostic sample through several post-HCT remission samples, the dMDS, and representative germline samples from both patient and donor, to show that the MDS-related pathologic mutations, including a canonical ASXL1 (p.Y700*) mutation, were detectable nearly 3 yr prior to the morphological detection of MDS. Furthermore, these MDS mutations were not detectable immediately following, and for >1 yr post-, HCT. These data support the clinical utility of comprehensive sequencing following HCT to detect donor-derived malignancies, while providing insights into the clonal progression of dMDS over a 4-yr period.


Assuntos
Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Adolescente , Adulto , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Repressoras/genética , Doadores de Tecidos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo/métodos
19.
iScience ; 2: 210-220, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29888750

RESUMO

TUC338 is an ultraconserved long non-coding RNA that contributes to transformed cell growth in hepatocellular carcinoma (HCC). Genomic regions of TUC338 occupancy were enriched in unique or known binding motifs homologous to the tumor suppressors Pax6 and p53. Genes involved in cell proliferation were enriched within a 9-kb range of TUC338-binding sites. TUC338 RNA-based purification was used to isolate chromatin for mass spectrometry, and the plasminogen activator inhibitor-1 RNA-binding protein (PAI-RBP1) was identified as a TUC338 RNA-binding partner. The PAI-RBP1 target gene plasminogen activator inhibitor-1 (PAI-1) itself could also be post-transcriptionally regulated by TUC338. Thus modulation of transformed cell growth by TUC338 may involve binding to PAI-RBP1 as well as to sequence-defined cis-binding sites to modulate gene expression. These findings suggest that ultraconserved RNAs such as TUC338 can function in a manner analogous to transcription factors to modulate cell proliferation and transformed cell growth in HCC.

20.
Nat Commun ; 9(1): 1770, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720585

RESUMO

Activating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remains unclear. Using a retroviral acute myeloid mouse leukemia model, we demonstrate that FLT3 ITD , FLT3 N676K , and NRAS G12D accelerate KMT2A-MLLT3 leukemia onset. Further, also subclonal FLT3 N676K mutations accelerate disease, possibly by providing stimulatory factors. Herein, we show that one such factor, MIF, promotes survival of mouse KMT2A-MLLT3 leukemia initiating cells. We identify acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 in KMT2A-MLLT3 leukemia cells that favored clonal expansion. During clonal evolution, we observe serial genetic changes at the Kras G12D locus, consistent with a strong selective advantage of additional Kras G12D . KMT2A-MLLT3 leukemias with signaling mutations enforce Myc and Myb transcriptional modules. Our results provide new insight into the biology of KMT2A-R leukemia with subclonal signaling mutations and highlight the importance of activated signaling as a contributing driver.


Assuntos
Evolução Clonal , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Leucemia Mieloide/genética , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Doença Aguda , Animais , Linhagem Celular Tumoral , Células Cultivadas , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...